- Index
- December 2023
DIVPD — Divide Packed Double Precision Floating-Point Values
Opcode/Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
66 0F 5E /r DIVPD xmm1, xmm2/m128 | A | V/V | SSE2 | Divide packed double precision floating-point values in xmm1 by packed double precision floating-point values in xmm2/mem. |
VEX.128.66.0F.WIG 5E /r VDIVPD xmm1, xmm2, xmm3/m128 | B | V/V | AVX | Divide packed double precision floating-point values in xmm2 by packed double precision floating-point values in xmm3/mem. |
VEX.256.66.0F.WIG 5E /r VDIVPD ymm1, ymm2, ymm3/m256 | B | V/V | AVX | Divide packed double precision floating-point values in ymm2 by packed double precision floating-point values in ymm3/mem. |
EVEX.128.66.0F.W1 5E /r VDIVPD xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcst | C | V/V | AVX512VL AVX512F | Divide packed double precision floating-point values in xmm2 by packed double precision floating-point values in xmm3/m128/m64bcst and write results to xmm1 subject to writemask k1. |
EVEX.256.66.0F.W1 5E /r VDIVPD ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst | C | V/V | AVX512VL AVX512F | Divide packed double precision floating-point values in ymm2 by packed double precision floating-point values in ymm3/m256/m64bcst and write results to ymm1 subject to writemask k1. |
EVEX.512.66.0F.W1 5E /r VDIVPD zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst{er} | C | V/V | AVX512F | Divide packed double precision floating-point values in zmm2 by packed double precision floating-point values in zmm3/m512/m64bcst and write results to zmm1 subject to writemask k1. |
Instruction Operand Encoding ¶
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | N/A | ModRM:reg (r, w) | ModRM:r/m (r) | N/A | N/A |
B | N/A | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | N/A |
C | Full | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | N/A |
Description ¶
Performs a SIMD divide of the double precision floating-point values in the first source operand by the floating-point values in the second source operand (the third operand). Results are written to the destination operand (the first operand).
EVEX encoded versions: The first source operand (the second operand) is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 64-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.
VEX.256 encoded version: The first source operand (the second operand) is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register. The upper bits (MAXVL-1:256) of the corresponding destination are zeroed.
VEX.128 encoded version: The first source operand (the second operand) is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding destination are zeroed.
128-bit Legacy SSE version: The second source operand (the second operand) can be an XMM register or an 128-bit memory location. The destination is the same as the first source operand. The upper bits (MAXVL-1:128) of the corresponding destination are unmodified.
Operation ¶
VDIVPD (EVEX Encoded Versions) ¶
(KL, VL) = (2, 128), (4, 256), (8, 512)
IF (VL = 512) AND (EVEX.b = 1) AND SRC2 *is a register*
THEN
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ; refer to Table 15-4 in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1
ELSE
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC);
FI;
FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*
THEN
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN
DEST[i+63:i] := SRC1[i+63:i] / SRC2[63:0]
ELSE
DEST[i+63:i] := SRC1[i+63:i] / SRC2[i+63:i]
FI;
ELSE
IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE ; zeroing-masking
DEST[i+63:i] := 0
FI
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
VDIVPD (VEX.256 Encoded Version) ¶
DEST[63:0] := SRC1[63:0] / SRC2[63:0] DEST[127:64] := SRC1[127:64] / SRC2[127:64] DEST[191:128] := SRC1[191:128] / SRC2[191:128] DEST[255:192] := SRC1[255:192] / SRC2[255:192] DEST[MAXVL-1:256] := 0;
VDIVPD (VEX.128 Encoded Version) ¶
DEST[63:0] := SRC1[63:0] / SRC2[63:0] DEST[127:64] := SRC1[127:64] / SRC2[127:64] DEST[MAXVL-1:128] := 0;
DIVPD (128-bit Legacy SSE Version) ¶
DEST[63:0] := SRC1[63:0] / SRC2[63:0] DEST[127:64] := SRC1[127:64] / SRC2[127:64] DEST[MAXVL-1:128] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent ¶
VDIVPD __m512d _mm512_div_pd( __m512d a, __m512d b);
VDIVPD __m512d _mm512_mask_div_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VDIVPD __m512d _mm512_maskz_div_pd( __mmask8 k, __m512d a, __m512d b);
VDIVPD __m256d _mm256_mask_div_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VDIVPD __m256d _mm256_maskz_div_pd( __mmask8 k, __m256d a, __m256d b);
VDIVPD __m128d _mm_mask_div_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VDIVPD __m128d _mm_maskz_div_pd( __mmask8 k, __m128d a, __m128d b);
VDIVPD __m512d _mm512_div_round_pd( __m512d a, __m512d b, int);
VDIVPD __m512d _mm512_mask_div_round_pd(__m512d s, __mmask8 k, __m512d a, __m512d b, int);
VDIVPD __m512d _mm512_maskz_div_round_pd( __mmask8 k, __m512d a, __m512d b, int);
VDIVPD __m256d _mm256_div_pd (__m256d a, __m256d b);
DIVPD __m128d _mm_div_pd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions ¶
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.
Other Exceptions ¶
VEX-encoded instructions, see Table 2-19, “Type 2 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-46, “Type E2 Class Exception Conditions.”