- Index
- December 2023
VRSQRT28SS — Approximation to the Reciprocal Square Root of Scalar Single Precision Floating-Point Value With Less Than 2^-28 Relative Error
Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
EVEX.LLIG.66.0F38.W0 CD /r VRSQRT28SS xmm1 {k1}{z}, xmm2, xmm3/m32 {sae} | A | V/V | AVX512ER | Computes approximate reciprocal square root (<2^-28 relative error) of the scalar single-precision floating-point value from xmm3/m32 and stores result in xmm1with writemask k1. Also, upper 3 single-precision floating-point value (bits[127:32]) from xmm2 is copied to xmm1[127:32]. |
Instruction Operand Encoding ¶
Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4 | |||||
---|---|---|---|---|---|
A Tuple1 Scalar ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A |
Description ¶
Computes the reciprocal square root of the low float32 value in the second source operand (the third operand) and store the result to the destination operand (the first operand). The approximate reciprocal square root is evaluated with less than 2^-28 of maximum relative error prior to final rounding. The final result is rounded to < 2^-23 relative error before written to the low float32 element of the destination according to the writemask k1. Bits 127:32 of the destination is copied from the corresponding bits of the first source operand (the second operand).
If any source element is NaN, the quietized NaN source value is returned for that element. Negative (non-zero) source numbers, as well as -∞, return the canonical NaN and set the Invalid Flag (#I).
A value of -0 must return -∞ and set the DivByZero flags (#Z). Negative numbers should return NaN and set the Invalid flag (#I). Note however that the instruction flush input denormals to zero of the same sign, so negative denormals return -∞ and set the DivByZero flag.
The first source operand is an XMM register. The second source operand is an XMM register or a 32-bit memory location. The destination operand is a XMM register.
A numerically exact implementation of VRSQRT28xx can be found at https://software.intel.com/en-us/arti- ¶
cles/reference-implementations-for-IA-approximation-instructions-vrcp14-vrsqrt14-vrcp28-vrsqrt28-vexp2. ¶
Operation ¶
VRSQRT28SS (EVEX Encoded Versions) ¶
IF k1[0] OR *no writemask* THEN DEST[31: 0] := (1.0/ SQRT(SRC[31: 0])); ELSE IF *merging-masking* ; merging-masking THEN *DEST[31: 0] remains unchanged* ELSE ; zeroing-masking DEST[31: 0] := 0 FI; FI; ENDFOR; DEST[127:32] := SRC1[127: 32] DEST[MAXVL-1:128] := 0
Input Value | Result Value | Comments |
---|---|---|
NAN | QNAN(input) | If (SRC = SNaN) then #I |
X = 2-2n | 2n | |
X<0 | QNaN_Indefinite | Including -INF |
X = -0 or negative denormal | -INF | #Z |
X = +0 or positive denormal | +INF | #Z |
X = +INF | +0 |
Intel C/C++ Compiler Intrinsic Equivalent ¶
VRSQRT28SS __m128 _mm_rsqrt28_round_ss(__m128 a, __m128 b, int rounding);
VRSQRT28SS __m128 _mm_mask_rsqrt28_round_ss(__m128 s, __mmask8 m,__m128 a,__m128 b, int rounding);
VRSQRT28SS __m128 _mm_maskz_rsqrt28_round_ss(__mmask8 m,__m128 a,__m128 b, int rounding);
SIMD Floating-Point Exceptions ¶
Invalid (if SNaN input), Divide-by-zero.
Other Exceptions ¶
See Table 2-47, “Type E3 Class Exception Conditions.”