- Index
- December 2023
PSHUFD — Shuffle Packed Doublewords
Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
66 0F 70 /r ib PSHUFD xmm1, xmm2/m128, imm8 | A | V/V | SSE2 | Shuffle the doublewords in xmm2/m128 based on the encoding in imm8 and store the result in xmm1. |
VEX.128.66.0F.WIG 70 /r ib VPSHUFD xmm1, xmm2/m128, imm8 | A | V/V | AVX | Shuffle the doublewords in xmm2/m128 based on the encoding in imm8 and store the result in xmm1. |
VEX.256.66.0F.WIG 70 /r ib VPSHUFD ymm1, ymm2/m256, imm8 | A | V/V | AVX2 | Shuffle the doublewords in ymm2/m256 based on the encoding in imm8 and store the result in ymm1. |
EVEX.128.66.0F.W0 70 /r ib VPSHUFD xmm1 {k1}{z}, xmm2/m128/m32bcst, imm8 | B | V/V | AVX512VL AVX512F | Shuffle the doublewords in xmm2/m128/m32bcst based on the encoding in imm8 and store the result in xmm1 using writemask k1. |
EVEX.256.66.0F.W0 70 /r ib VPSHUFD ymm1 {k1}{z}, ymm2/m256/m32bcst, imm8 | B | V/V | AVX512VL AVX512F | Shuffle the doublewords in ymm2/m256/m32bcst based on the encoding in imm8 and store the result in ymm1 using writemask k1. |
EVEX.512.66.0F.W0 70 /r ib VPSHUFD zmm1 {k1}{z}, zmm2/m512/m32bcst, imm8 | B | V/V | AVX512F | Shuffle the doublewords in zmm2/m512/m32bcst based on the encoding in imm8 and store the result in zmm1 using writemask k1. |
Instruction Operand Encoding ¶
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | N/A | ModRM:reg (w) | ModRM:r/m (r) | imm8 | N/A |
B | Full | ModRM:reg (w) | ModRM:r/m (r) | imm8 | N/A |
Description ¶
Copies doublewords from source operand (second operand) and inserts them in the destination operand (first operand) at the locations selected with the order operand (third operand). Figure 4-16 shows the operation of the 256-bit VPSHUFD instruction and the encoding of the order operand. Each 2-bit field in the order operand selects the contents of one doubleword location within a 128-bit lane and copy to the target element in the destination operand. For example, bits 0 and 1 of the order operand targets the first doubleword element in the low and high 128-bit lane of the destination operand for 256-bit VPSHUFD. The encoded value of bits 1:0 of the order operand (see the field encoding in Figure 4-16) determines which doubleword element (from the respective 128-bit lane) of the source operand will be copied to doubleword 0 of the destination operand.
For 128-bit operation, only the low 128-bit lane are operative. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction permits a doubleword in the source operand to be copied to more than one doubleword location in the destination operand.
10B - X2 ORDER 11B - X7 7 6 5 4 3 2 1 0 Operand 11B - X3 Operand
The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction permits a doubleword in the source operand to be copied to more than one doubleword location in the destination operand.
In 64-bit mode and not encoded in VEX/EVEX, using REX.R permits this instruction to access XMM8-XMM15.
128-bit Legacy SSE version: Bits (MAXVL-1:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register. Bits (MAXVL-1:128) of the corresponding ZMM register are zeroed.
VEX.256 encoded version: The source operand can be an YMM register or a 256-bit memory location. The destination operand is an YMM register. Bits (MAXVL-1:256) of the corresponding ZMM register are zeroed. Bits (255-1:128) of the destination stores the shuffled results of the upper 16 bytes of the source operand using the immediate byte as the order operand.
EVEX encoded version: The source operand can be an ZMM/YMM/XMM register, a 512/256/128-bit memory location, or a 512/256/128-bit vector broadcasted from a 32-bit memory location. The destination operand is a ZMM/YMM/XMM register updated according to the writemask.
Each 128-bit lane of the destination stores the shuffled results of the respective lane of the source operand using the immediate byte as the order operand.
Note: EVEX.vvvv and VEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
Operation ¶
PSHUFD (128-bit Legacy SSE Version) ¶
DEST[31:0] := (SRC >> (ORDER[1:0] * 32))[31:0]; DEST[63:32] := (SRC >> (ORDER[3:2] * 32))[31:0]; DEST[95:64] := (SRC >> (ORDER[5:4] * 32))[31:0]; DEST[127:96] := (SRC >> (ORDER[7:6] * 32))[31:0]; DEST[MAXVL-1:128] (Unmodified)
VPSHUFD (VEX.128 Encoded Version) ¶
DEST[31:0] := (SRC >> (ORDER[1:0] * 32))[31:0]; DEST[63:32] := (SRC >> (ORDER[3:2] * 32))[31:0]; DEST[95:64] := (SRC >> (ORDER[5:4] * 32))[31:0]; DEST[127:96] := (SRC >> (ORDER[7:6] * 32))[31:0]; DEST[MAXVL-1:128] := 0
VPSHUFD (VEX.256 Encoded Version) ¶
DEST[31:0] := (SRC[127:0] >> (ORDER[1:0] * 32))[31:0]; DEST[63:32] := (SRC[127:0] >> (ORDER[3:2] * 32))[31:0]; DEST[95:64] := (SRC[127:0] >> (ORDER[5:4] * 32))[31:0]; DEST[127:96] := (SRC[127:0] >> (ORDER[7:6] * 32))[31:0]; DEST[159:128] := (SRC[255:128] >> (ORDER[1:0] * 32))[31:0]; DEST[191:160] := (SRC[255:128] >> (ORDER[3:2] * 32))[31:0]; DEST[223:192] := (SRC[255:128] >> (ORDER[5:4] * 32))[31:0]; DEST[255:224] := (SRC[255:128] >> (ORDER[7:6] * 32))[31:0]; DEST[MAXVL-1:256] := 0
VPSHUFD (EVEX Encoded Versions) ¶
(KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF (EVEX.b = 1) AND (SRC *is memory*) THEN TMP_SRC[i+31:i] := SRC[31:0] ELSE TMP_SRC[i+31:i] := SRC[i+31:i] FI; ENDFOR; IF VL >= 128 TMP_DEST[31:0] := (TMP_SRC[127:0] >> (ORDER[1:0] * 32))[31:0]; TMP_DEST[63:32] := (TMP_SRC[127:0] >> (ORDER[3:2] * 32))[31:0]; TMP_DEST[95:64] := (TMP_SRC[127:0] >> (ORDER[5:4] * 32))[31:0]; TMP_DEST[127:96] := (TMP_SRC[127:0] >> (ORDER[7:6] * 32))[31:0]; FI; IF VL >= 256 TMP_DEST[159:128] := (TMP_SRC[255:128] >> (ORDER[1:0] * 32))[31:0]; TMP_DEST[191:160] := (TMP_SRC[255:128] >> (ORDER[3:2] * 32))[31:0]; TMP_DEST[223:192] := (TMP_SRC[255:128] >> (ORDER[5:4] * 32))[31:0]; TMP_DEST[255:224] := (TMP_SRC[255:128] >> (ORDER[7:6] * 32))[31:0]; FI; IF VL >= 512 TMP_DEST[287:256] := (TMP_SRC[383:256] >> (ORDER[1:0] * 32))[31:0]; TMP_DEST[319:288] := (TMP_SRC[383:256] >> (ORDER[3:2] * 32))[31:0]; TMP_DEST[351:320] := (TMP_SRC[383:256] >> (ORDER[5:4] * 32))[31:0]; TMP_DEST[383:352] := (TMP_SRC[383:256] >> (ORDER[7:6] * 32))[31:0]; TMP_DEST[415:384] := (TMP_SRC[511:384] >> (ORDER[1:0] * 32))[31:0]; TMP_DEST[447:416] := (TMP_SRC[511:384] >> (ORDER[3:2] * 32))[31:0]; TMP_DEST[479:448] := (TMP_SRC[511:384] >> (ORDER[5:4] * 32))[31:0]; TMP_DEST[511:480] := (TMP_SRC[511:384] >> (ORDER[7:6] * 32))[31:0]; FI; FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := TMP_DEST[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
Intel C/C++ Compiler Intrinsic Equivalent ¶
VPSHUFD __m512i _mm512_shuffle_epi32(__m512i a, int n );
VPSHUFD __m512i _mm512_mask_shuffle_epi32(__m512i s, __mmask16 k, __m512i a, int n );
VPSHUFD __m512i _mm512_maskz_shuffle_epi32( __mmask16 k, __m512i a, int n );
VPSHUFD __m256i _mm256_mask_shuffle_epi32(__m256i s, __mmask8 k, __m256i a, int n );
VPSHUFD __m256i _mm256_maskz_shuffle_epi32( __mmask8 k, __m256i a, int n );
VPSHUFD __m128i _mm_mask_shuffle_epi32(__m128i s, __mmask8 k, __m128i a, int n );
VPSHUFD __m128i _mm_maskz_shuffle_epi32( __mmask8 k, __m128i a, int n );
(V)PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n)
VPSHUFD __m256i _mm256_shuffle_epi32(__m256i a, const int n)
Flags Affected ¶
None.
SIMD Floating-Point Exceptions ¶
None.
Other Exceptions ¶
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instruction, see Table 2-50, “Type E4NF Class Exception Conditions.”
Additionally:
#UD | If VEX.vvvv ≠ 1111B or EVEX.vvvv ≠ 1111B. |