- Index
- December 2023
VDBPSADBW — Double Block Packed Sum-Absolute-Differences (SAD) on Unsigned Bytes
Opcode/Instruction | Op/En | 64/32 Bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
EVEX.128.66.0F3A.W0 42 /r ib VDBPSADBW xmm1 {k1}{z}, xmm2, xmm3/m128, imm8 | A | V/V | AVX512VL AVX512BW | Compute packed SAD word results of unsigned bytes in dword block from xmm2 with unsigned bytes of dword blocks transformed from xmm3/m128 using the shuffle controls in imm8. Results are written to xmm1 under the writemask k1. |
EVEX.256.66.0F3A.W0 42 /r ib VDBPSADBW ymm1 {k1}{z}, ymm2, ymm3/m256, imm8 | A | V/V | AVX512VL AVX512BW | Compute packed SAD word results of unsigned bytes in dword block from ymm2 with unsigned bytes of dword blocks transformed from ymm3/m256 using the shuffle controls in imm8. Results are written to ymm1 under the writemask k1. |
EVEX.512.66.0F3A.W0 42 /r ib VDBPSADBW zmm1 {k1}{z}, zmm2, zmm3/m512, imm8 | A | V/V | AVX512BW | Compute packed SAD word results of unsigned bytes in dword block from zmm2 with unsigned bytes of dword blocks transformed from zmm3/m512 using the shuffle controls in imm8. Results are written to zmm1 under the writemask k1. |
Instruction Operand Encoding ¶
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | Full Mem | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | imm8 |
Description ¶
Compute packed SAD (sum of absolute differences) word results of unsigned bytes from two 32-bit dword elements. Packed SAD word results are calculated in multiples of qword superblocks, producing 4 SAD word results in each 64-bit superblock of the destination register.
Within each super block of packed word results, the SAD results from two 32-bit dword elements are calculated as follows:
- The lower two word results are calculated each from the SAD operation between a sliding dword element within a qword superblock from an intermediate vector with a stationary dword element in the corresponding qword superblock of the first source operand. The intermediate vector, see “Tmp1” in Figure 5-8, is constructed from the second source operand the imm8 byte as shuffle control to select dword elements within a 128-bit lane of the second source operand. The two sliding dword elements in a qword superblock of Tmp1 are located at byte offset 0 and 1 within the superblock, respectively. The stationary dword element in the qword superblock from the first source operand is located at byte offset 0.
- The next two word results are calculated each from the SAD operation between a sliding dword element within a qword superblock from the intermediate vector Tmp1 with a second stationary dword element in the corresponding qword superblock of the first source operand. The two sliding dword elements in a qword superblock of Tmp1 are located at byte offset 2and 3 within the superblock, respectively. The stationary dword element in the qword superblock from the first source operand is located at byte offset 4.
- The intermediate vector is constructed in 128-bits lanes. Within each 128-bit lane, each dword element of the intermediate vector is selected by a two-bit field within the imm8 byte on the corresponding 128-bits of the second source operand. The imm8 byte serves as dword shuffle control within each 128-bit lanes of the intermediate vector and the second source operand, similarly to PSHUFD.
The first source operand is a ZMM/YMM/XMM register. The second source operand is a ZMM/YMM/XMM register, or a 512/256/128-bit memory location. The destination operand is conditionally updated based on writemask k1 at 16-bit word granularity.
Operation ¶
VDBPSADBW (EVEX Encoded Versions) ¶
(KL, VL) = (8, 128), (16, 256), (32, 512) Selection of quadruplets: FOR I = 0 to VL step 128 TMP1[I+31:I] := select (SRC2[I+127: I], imm8[1:0]) TMP1[I+63: I+32] := select (SRC2[I+127: I], imm8[3:2]) TMP1[I+95: I+64] := select (SRC2[I+127: I], imm8[5:4]) TMP1[I+127: I+96] := select (SRC2[I+127: I], imm8[7:6]) END FOR SAD of quadruplets: FOR I =0 to VL step 64 TMP_DEST[I+15:I] := ABS(SRC1[I+7: I] - TMP1[I+7: I]) + ABS(SRC1[I+15: I+8]- TMP1[I+15: I+8]) + ABS(SRC1[I+23: I+16]- TMP1[I+23: I+16]) + ABS(SRC1[I+31: I+24]- TMP1[I+31: I+24]) TMP_DEST[I+31: I+16] := ABS(SRC1[I+7: I] - TMP1[I+15: I+8]) + ABS(SRC1[I+15: I+8]- TMP1[I+23: I+16]) + ABS(SRC1[I+23: I+16]- TMP1[I+31: I+24]) + ABS(SRC1[I+31: I+24]- TMP1[I+39: I+32]) TMP_DEST[I+47: I+32] := ABS(SRC1[I+39: I+32] - TMP1[I+23: I+16]) + ABS(SRC1[I+47: I+40]- TMP1[I+31: I+24]) + ABS(SRC1[I+55: I+48]- TMP1[I+39: I+32]) + ABS(SRC1[I+63: I+56]- TMP1[I+47: I+40]) TMP_DEST[I+63: I+48] := ABS(SRC1[I+39: I+32] - TMP1[I+31: I+24]) + ABS(SRC1[I+47: I+40] - TMP1[I+39: I+32]) + ABS(SRC1[I+55: I+48] - TMP1[I+47: I+40]) + ABS(SRC1[I+63: I+56] - TMP1[I+55: I+48]) ENDFOR FORj:= 0TOKL-1 i:= j*16 IF k1[j] OR *no writemask* THEN DEST[i+15:i] := TMP_DEST[i+15:i] ELSE IF *merging-masking* THEN *DEST[i+15:i] remains unchanged* ELSE ; zeroing-masking DEST[i+15:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
Intel C/C++ Compiler Intrinsic Equivalent ¶
VDBPSADBW __m512i _mm512_dbsad_epu8(__m512i a, __m512i b int imm8);
VDBPSADBW __m512i _mm512_mask_dbsad_epu8(__m512i s, __mmask32 m, __m512i a, __m512i b int imm8);
VDBPSADBW __m512i _mm512_maskz_dbsad_epu8(__mmask32 m, __m512i a, __m512i b int imm8);
VDBPSADBW __m256i _mm256_dbsad_epu8(__m256i a, __m256i b int imm8);
VDBPSADBW __m256i _mm256_mask_dbsad_epu8(__m256i s, __mmask16 m, __m256i a, __m256i b int imm8);
VDBPSADBW __m256i _mm256_maskz_dbsad_epu8(__mmask16 m, __m256i a, __m256i b int imm8);
VDBPSADBW __m128i _mm_dbsad_epu8(__m128i a, __m128i b int imm8);
VDBPSADBW __m128i _mm_mask_dbsad_epu8(__m128i s, __mmask8 m, __m128i a, __m128i b int imm8);
VDBPSADBW __m128i _mm_maskz_dbsad_epu8(__mmask8 m, __m128i a, __m128i b int imm8);
SIMD Floating-Point Exceptions ¶
None.
Other Exceptions ¶
See Exceptions Type E4NF.nb in Table 2-50, “Type E4NF Class Exception Conditions.”