- Index
- December 2023
GF2P8MULB — Galois Field Multiply Bytes
Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
66 0F38 CF /r GF2P8MULB xmm1, xmm2/m128 | A | V/V | GFNI | Multiplies elements in the finite field GF(2^8). |
VEX.128.66.0F38.W0 CF /r VGF2P8MULB xmm1, xmm2, xmm3/m128 | B | V/V | AVX GFNI | Multiplies elements in the finite field GF(2^8). |
VEX.256.66.0F38.W0 CF /r VGF2P8MULB ymm1, ymm2, ymm3/m256 | B | V/V | AVX GFNI | Multiplies elements in the finite field GF(2^8). |
EVEX.128.66.0F38.W0 CF /r VGF2P8MULB xmm1{k1}{z}, xmm2, xmm3/m128 | C | V/V | AVX512VL GFNI | Multiplies elements in the finite field GF(2^8). |
EVEX.256.66.0F38.W0 CF /r VGF2P8MULB ymm1{k1}{z}, ymm2, ymm3/m256 | C | V/V | AVX512VL GFNI | Multiplies elements in the finite field GF(2^8). |
EVEX.512.66.0F38.W0 CF /r VGF2P8MULB zmm1{k1}{z}, zmm2, zmm3/m512 | C | V/V | AVX512F GFNI | Multiplies elements in the finite field GF(2^8). |
Instruction Operand Encoding ¶
Op/En | Tuple | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | N/A | ModRM:reg (r, w) | ModRM:r/m (r) | N/A | N/A |
B | N/A | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | N/A |
C | Full Mem | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | N/A |
Description ¶
The instruction multiplies elements in the finite field GF(28), operating on a byte (field element) in the first source operand and the corresponding byte in a second source operand. The field GF(28) is represented in polynomial representation with the reduction polynomial x8 + x4 + x3 + x + 1.
This instruction does not support broadcasting.
The EVEX encoded form of this instruction supports memory fault suppression. The SSE encoded forms of the instruction require16B alignment on their memory operations.
Operation ¶
define gf2p8mul_byte(src1byte, src2byte): tword := 0 FOR i := 0 to 7: IF src2byte.bit[i]: tword := tword XOR (src1byte<< i) * carry out polynomial reduction by the characteristic polynomial p* FOR i := 14 downto 8: p := 0x11B << (i-8) *0x11B = 0000_0001_0001_1011 in binary* IF tword.bit[i]: tword := tword XOR p return tword.byte[0]
VGF2P8MULB dest, src1, src2 (EVEX Encoded Version) ¶
(KL, VL) = (16, 128), (32, 256), (64, 512) FOR j := 0 TO KL-1: IF k1[j] OR *no writemask*: DEST.byte[j] := gf2p8mul_byte(SRC1.byte[j], SRC2.byte[j]) ELSE iF *zeroing*: DEST.byte[j] := 0 * ELSE DEST.byte[j] remains unchanged* DEST[MAX_VL-1:VL] := 0
VGF2P8MULB dest, src1, src2 (128b and 256b VEX Encoded Versions) ¶
(KL, VL) = (16, 128), (32, 256) FOR j := 0 TO KL-1: DEST.byte[j] := gf2p8mul_byte(SRC1.byte[j], SRC2.byte[j]) DEST[MAX_VL-1:VL] := 0
GF2P8MULB srcdest, src1 (128b SSE Encoded Version) ¶
FOR j := 0 TO 15: SRCDEST.byte[j] :=gf2p8mul_byte(SRCDEST.byte[j], SRC1.byte[j])
Intel C/C++ Compiler Intrinsic Equivalent ¶
(V)GF2P8MULB __m128i _mm_gf2p8mul_epi8(__m128i, __m128i);
(V)GF2P8MULB __m128i _mm_mask_gf2p8mul_epi8(__m128i, __mmask16, __m128i, __m128i);
(V)GF2P8MULB __m128i _mm_maskz_gf2p8mul_epi8(__mmask16, __m128i, __m128i);
VGF2P8MULB __m256i _mm256_gf2p8mul_epi8(__m256i, __m256i);
VGF2P8MULB __m256i _mm256_mask_gf2p8mul_epi8(__m256i, __mmask32, __m256i, __m256i);
VGF2P8MULB __m256i _mm256_maskz_gf2p8mul_epi8(__mmask32, __m256i, __m256i);
VGF2P8MULB __m512i _mm512_gf2p8mul_epi8(__m512i, __m512i);
VGF2P8MULB __m512i _mm512_mask_gf2p8mul_epi8(__m512i, __mmask64, __m512i, __m512i);
VGF2P8MULB __m512i _mm512_maskz_gf2p8mul_epi8(__mmask64, __m512i, __m512i);
SIMD Floating-Point Exceptions ¶
None.
Other Exceptions ¶
Legacy-encoded and VEX-encoded: See Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded: See Table 2-49, “Type E4 Class Exception Conditions.”