- Index
- December 2023
VSHUFF32x4/VSHUFF64x2/VSHUFI32x4/VSHUFI64x2 — Shuffle Packed Values at 128-BitGranularity
Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
EVEX.256.66.0F3A.W0 23 /r ib VSHUFF32X4 ymm1{k1}{z}, ymm2, ymm3/m256/m32bcst, imm8 | A | V/V | AVX512VL AVX512F | Shuffle 128-bit packed single-precision floating-point values selected by imm8 from ymm2 and ymm3/m256/m32bcst and place results in ymm1 subject to writemask k1. |
EVEX.512.66.0F3A.W0 23 /r ib VSHUFF32x4 zmm1{k1}{z}, zmm2, zmm3/m512/m32bcst, imm8 | A | V/V | AVX512F | Shuffle 128-bit packed single-precision floating-point values selected by imm8 from zmm2 and zmm3/m512/m32bcst and place results in zmm1 subject to writemask k1. |
EVEX.256.66.0F3A.W1 23 /r ib VSHUFF64X2 ymm1{k1}{z}, ymm2, ymm3/m256/m64bcst, imm8 | A | V/V | AVX512VL AVX512F | Shuffle 128-bit packed double precision floating-point values selected by imm8 from ymm2 and ymm3/m256/m64bcst and place results in ymm1 subject to writemask k1. |
EVEX.512.66.0F3A.W1 23 /r ib VSHUFF64x2 zmm1{k1}{z}, zmm2, zmm3/m512/m64bcst, imm8 | A | V/V | AVX512F | Shuffle 128-bit packed double precision floating-point values selected by imm8 from zmm2 and zmm3/m512/m64bcst and place results in zmm1 subject to writemask k1. |
EVEX.256.66.0F3A.W0 43 /r ib VSHUFI32X4 ymm1{k1}{z}, ymm2, ymm3/m256/m32bcst, imm8 | A | V/V | AVX512VL AVX512F | Shuffle 128-bit packed double-word values selected by imm8 from ymm2 and ymm3/m256/m32bcst and place results in ymm1 subject to writemask k1. |
EVEX.512.66.0F3A.W0 43 /r ib VSHUFI32x4 zmm1{k1}{z}, zmm2, zmm3/m512/m32bcst, imm8 | A | V/V | AVX512F | Shuffle 128-bit packed double-word values selected by imm8 from zmm2 and zmm3/m512/m32bcst and place results in zmm1 subject to writemask k1. |
EVEX.256.66.0F3A.W1 43 /r ib VSHUFI64X2 ymm1{k1}{z}, ymm2, ymm3/m256/m64bcst, imm8 | A | V/V | AVX512VL AVX512F | Shuffle 128-bit packed quad-word values selected by imm8 from ymm2 and ymm3/m256/m64bcst and place results in ymm1 subject to writemask k1. |
EVEX.512.66.0F3A.W1 43 /r ib VSHUFI64x2 zmm1{k1}{z}, zmm2, zmm3/m512/m64bcst, imm8 | A | V/V | AVX512F | Shuffle 128-bit packed quad-word values selected by imm8 from zmm2 and zmm3/m512/m64bcst and place results in zmm1 subject to writemask k1. |
Instruction Operand Encoding ¶
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | Full | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | N/A |
Description ¶
256-bit Version: Moves one of the two 128-bit packed single-precision floating-point values from the first source operand (second operand) into the low 128-bit of the destination operand (first operand); moves one of the two packed 128-bit floating-point values from the second source operand (third operand) into the high 128-bit of the destination operand. The selector operand (third operand) determines which values are moved to the destination operand.
512-bit Version: Moves two of the four 128-bit packed single-precision floating-point values from the first source operand (second operand) into the low 256-bit of each double qword of the destination operand (first operand); moves two of the four packed 128-bit floating-point values from the second source operand (third operand) into the high 256-bit of the destination operand. The selector operand (third operand) determines which values are moved to the destination operand.
The first source operand is a vector register. The second source operand can be a ZMM register, a 512-bit memory location or a 512-bit vector broadcasted from a 32/64-bit memory location. The destination operand is a vector register.
The writemask updates the destination operand with the granularity of 32/64-bit data elements.
Operation ¶
Select2(SRC, control) { CASE (control[0]) OF 0: TMP := SRC[127:0]; 1: TMP := SRC[255:128]; ESAC; RETURN TMP } Select4(SRC, control) { CASE (control[1:0]) OF 0: TMP := SRC[127:0]; 1: TMP := SRC[255:128]; 2: TMP := SRC[383:256]; 3: TMP := SRC[511:384]; ESAC; RETURN TMP }
VSHUFF32x4 (EVEX versions) ¶
(KL, VL) = (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN TMP_SRC2[i+31:i] := SRC2[31:0] ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i] FI; ENDFOR; IF VL = 256 TMP_DEST[127:0] := Select2(SRC1[255:0], imm8[0]); TMP_DEST[255:128] := Select2(SRC2[255:0], imm8[1]); FI; IF VL = 512 TMP_DEST[127:0] := Select4(SRC1[511:0], imm8[1:0]); TMP_DEST[255:128] := Select4(SRC1[511:0], imm8[3:2]); TMP_DEST[383:256] := Select4(TMP_SRC2[511:0], imm8[5:4]); TMP_DEST[511:384] := Select4(TMP_SRC2[511:0], imm8[7:6]); FI; FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := TMP_DEST[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking THEN DEST[i+31:i] := 0 FI; FI; ENDFOR DEST[MAXVL-1:VL] := 0
VSHUFF64x2 (EVEX 512-bit version) ¶
(KL, VL) = (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN TMP_SRC2[i+63:i] := SRC2[63:0] ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i] FI; ENDFOR; IF VL = 256 TMP_DEST[127:0] := Select2(SRC1[255:0], imm8[0]); TMP_DEST[255:128] := Select2(SRC2[255:0], imm8[1]); FI; IF VL = 512 TMP_DEST[127:0] := Select4(SRC1[511:0], imm8[1:0]); TMP_DEST[255:128] := Select4(SRC1[511:0], imm8[3:2]); TMP_DEST[383:256] := Select4(TMP_SRC2[511:0], imm8[5:4]); TMP_DEST[511:384] := Select4(TMP_SRC2[511:0], imm8[7:6]); FI; FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := TMP_DEST[i+63:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking THEN DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
VSHUFI32x4 (EVEX 512-bit version) ¶
(KL, VL) = (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN TMP_SRC2[i+31:i] := SRC2[31:0] ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i] FI; ENDFOR; IF VL = 256 TMP_DEST[127:0] := Select2(SRC1[255:0], imm8[0]); TMP_DEST[255:128] := Select2(SRC2[255:0], imm8[1]); FI; IF VL = 512 TMP_DEST[127:0] := Select4(SRC1[511:0], imm8[1:0]); TMP_DEST[255:128] := Select4(SRC1[511:0], imm8[3:2]); TMP_DEST[383:256] := Select4(TMP_SRC2[511:0], imm8[5:4]); TMP_DEST[511:384] := Select4(TMP_SRC2[511:0], imm8[7:6]); FI; FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := TMP_DEST[i+31:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking THEN DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
VSHUFI64x2 (EVEX 512-bit version) ¶
(KL, VL) = (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF (EVEX.b = 1) AND (SRC2 *is memory*) THEN TMP_SRC2[i+63:i] := SRC2[63:0] ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i] FI; ENDFOR; IF VL = 256 TMP_DEST[127:0] := Select2(SRC1[255:0], imm8[0]); TMP_DEST[255:128] := Select2(SRC2[255:0], imm8[1]); FI; IF VL = 512 TMP_DEST[127:0] := Select4(SRC1[511:0], imm8[1:0]); TMP_DEST[255:128] := Select4(SRC1[511:0], imm8[3:2]); TMP_DEST[383:256] := Select4(TMP_SRC2[511:0], imm8[5:4]); TMP_DEST[511:384] := Select4(TMP_SRC2[511:0], imm8[7:6]); FI; FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := TMP_DEST[i+63:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking THEN DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
Intel C/C++ Compiler Intrinsic Equivalent ¶
VSHUFI32x4 __m512i _mm512_shuffle_i32x4(__m512i a, __m512i b, int imm);
VSHUFI32x4 __m512i _mm512_mask_shuffle_i32x4(__m512i s, __mmask16 k, __m512i a, __m512i b, int imm);
VSHUFI32x4 __m512i _mm512_maskz_shuffle_i32x4( __mmask16 k, __m512i a, __m512i b, int imm);
VSHUFI32x4 __m256i _mm256_shuffle_i32x4(__m256i a, __m256i b, int imm);
VSHUFI32x4 __m256i _mm256_mask_shuffle_i32x4(__m256i s, __mmask8 k, __m256i a, __m256i b, int imm);
VSHUFI32x4 __m256i _mm256_maskz_shuffle_i32x4( __mmask8 k, __m256i a, __m256i b, int imm);
VSHUFF32x4 __m512 _mm512_shuffle_f32x4(__m512 a, __m512 b, int imm);
VSHUFF32x4 __m512 _mm512_mask_shuffle_f32x4(__m512 s, __mmask16 k, __m512 a, __m512 b, int imm);
VSHUFF32x4 __m512 _mm512_maskz_shuffle_f32x4( __mmask16 k, __m512 a, __m512 b, int imm);
VSHUFI64x2 __m512i _mm512_shuffle_i64x2(__m512i a, __m512i b, int imm);
VSHUFI64x2 __m512i _mm512_mask_shuffle_i64x2(__m512i s, __mmask8 k, __m512i b, __m512i b, int imm);
VSHUFI64x2 __m512i _mm512_maskz_shuffle_i64x2( __mmask8 k, __m512i a, __m512i b, int imm);
VSHUFF64x2 __m512d _mm512_shuffle_f64x2(__m512d a, __m512d b, int imm);
VSHUFF64x2 __m512d _mm512_mask_shuffle_f64x2(__m512d s, __mmask8 k, __m512d a, __m512d b, int imm);
VSHUFF64x2 __m512d _mm512_maskz_shuffle_f64x2( __mmask8 k, __m512d a, __m512d b, int imm);
SIMD Floating-Point Exceptions ¶
None.
Other Exceptions ¶
See Table 2-50, “Type E4NF Class Exception Conditions.”
Additionally:
#UD | If EVEX.L’L = 0 for VSHUFF32x4/VSHUFF64x2. |