- Index
- December 2023
DIVSD — Divide Scalar Double Precision Floating-Point Value
Opcode/Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
F2 0F 5E /r DIVSD xmm1, xmm2/m64 | A | V/V | SSE2 | Divide low double precision floating-point value in xmm1 by low double precision floating-point value in xmm2/m64. |
VEX.LIG.F2.0F.WIG 5E /r VDIVSD xmm1, xmm2, xmm3/m64 | B | V/V | AVX | Divide low double precision floating-point value in xmm2 by low double precision floating-point value in xmm3/m64. |
EVEX.LLIG.F2.0F.W1 5E /r VDIVSD xmm1 {k1}{z}, xmm2, xmm3/m64{er} | C | V/V | AVX512F | Divide low double precision floating-point value in xmm2 by low double precision floating-point value in xmm3/m64. |
Instruction Operand Encoding ¶
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | N/A | ModRM:reg (r, w) | ModRM:r/m (r) | N/A | N/A |
B | N/A | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | N/A |
C | Tuple1 Scalar | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | N/A |
Description ¶
Divides the low double precision floating-point value in the first source operand by the low double precision floating-point value in the second source operand, and stores the double precision floating-point result in the destination operand. The second source operand can be an XMM register or a 64-bit memory location. The first source and destination are XMM registers.
128-bit Legacy SSE version: The first source operand and the destination operand are the same. Bits (MAXVL-1:64) of the corresponding ZMM destination register remain unchanged.
VEX.128 encoded version: The first source operand is an xmm register encoded by VEX.vvvv. The quadword at bits 127:64 of the destination operand is copied from the corresponding quadword of the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX.128 encoded version: The first source operand is an xmm register encoded by EVEX.vvvv. The quadword element of the destination operand at bits 127:64 are copied from the first source operand. Bits (MAXVL-1:128) of the destination register are zeroed.
EVEX version: The low quadword element of the destination is updated according to the writemask.
Software should ensure VDIVSD is encoded with VEX.L=0. Encoding VDIVSD with VEX.L=1 may encounter unpredictable behavior across different processor generations.
Operation ¶
VDIVSD (EVEX Encoded Version) ¶
IF (EVEX.b = 1) AND SRC2 *is a register* THEN SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(EVEX.RC); ELSE SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(MXCSR.RC); FI; IF k1[0] or *no writemask* THEN DEST[63:0] := SRC1[63:0] / SRC2[63:0] ELSE IF *merging-masking* ; merging-masking THEN *DEST[63:0] remains unchanged* ELSE ; zeroing-masking THEN DEST[63:0] := 0 FI; FI; DEST[127:64] := SRC1[127:64] DEST[MAXVL-1:128] := 0
VDIVSD (VEX.128 Encoded Version) ¶
DEST[63:0] := SRC1[63:0] / SRC2[63:0] DEST[127:64] := SRC1[127:64] DEST[MAXVL-1:128] := 0
DIVSD (128-bit Legacy SSE Version) ¶
DEST[63:0] := DEST[63:0] / SRC[63:0] DEST[MAXVL-1:64] (Unmodified)
Intel C/C++ Compiler Intrinsic Equivalent ¶
VDIVSD __m128d _mm_mask_div_sd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VDIVSD __m128d _mm_maskz_div_sd( __mmask8 k, __m128d a, __m128d b);
VDIVSD __m128d _mm_div_round_sd( __m128d a, __m128d b, int);
VDIVSD __m128d _mm_mask_div_round_sd(__m128d s, __mmask8 k, __m128d a, __m128d b, int);
VDIVSD __m128d _mm_maskz_div_round_sd( __mmask8 k, __m128d a, __m128d b, int);
DIVSD __m128d _mm_div_sd (__m128d a, __m128d b);
SIMD Floating-Point Exceptions ¶
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.
Other Exceptions ¶
VEX-encoded instructions, see Table 2-20, “Type 3 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-47, “Type E3 Class Exception Conditions.”