- Index
- December 2023
VPBROADCAST — Load Integer and Broadcast
Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
VEX.128.66.0F38.W0 78 /r VPBROADCASTB xmm1, xmm2/m8 | A | V/V | AVX2 | Broadcast a byte integer in the source operand to sixteen locations in xmm1. |
VEX.256.66.0F38.W0 78 /r VPBROADCASTB ymm1, xmm2/m8 | A | V/V | AVX2 | Broadcast a byte integer in the source operand to thirty-two locations in ymm1. |
EVEX.128.66.0F38.W0 78 /r VPBROADCASTB xmm1{k1}{z}, xmm2/m8 | B | V/V | AVX512VL AVX512BW | Broadcast a byte integer in the source operand to locations in xmm1 subject to writemask k1. |
EVEX.256.66.0F38.W0 78 /r VPBROADCASTB ymm1{k1}{z}, xmm2/m8 | B | V/V | AVX512VL AVX512BW | Broadcast a byte integer in the source operand to locations in ymm1 subject to writemask k1. |
EVEX.512.66.0F38.W0 78 /r VPBROADCASTB zmm1{k1}{z}, xmm2/m8 | B | V/V | AVX512BW | Broadcast a byte integer in the source operand to 64 locations in zmm1 subject to writemask k1. |
VEX.128.66.0F38.W0 79 /r VPBROADCASTW xmm1, xmm2/m16 | A | V/V | AVX2 | Broadcast a word integer in the source operand to eight locations in xmm1. |
VEX.256.66.0F38.W0 79 /r VPBROADCASTW ymm1, xmm2/m16 | A | V/V | AVX2 | Broadcast a word integer in the source operand to sixteen locations in ymm1. |
EVEX.128.66.0F38.W0 79 /r VPBROADCASTW xmm1{k1}{z}, xmm2/m16 | B | V/V | AVX512VL AVX512BW | Broadcast a word integer in the source operand to locations in xmm1 subject to writemask k1. |
EVEX.256.66.0F38.W0 79 /r VPBROADCASTW ymm1{k1}{z}, xmm2/m16 | B | V/V | AVX512VL AVX512BW | Broadcast a word integer in the source operand to locations in ymm1 subject to writemask k1. |
EVEX.512.66.0F38.W0 79 /r VPBROADCASTW zmm1{k1}{z}, xmm2/m16 | B | V/V | AVX512BW | Broadcast a word integer in the source operand to 32 locations in zmm1 subject to writemask k1. |
VEX.128.66.0F38.W0 58 /r VPBROADCASTD xmm1, xmm2/m32 | A | V/V | AVX2 | Broadcast a dword integer in the source operand to four locations in xmm1. |
VEX.256.66.0F38.W0 58 /r VPBROADCASTD ymm1, xmm2/m32 | A | V/V | AVX2 | Broadcast a dword integer in the source operand to eight locations in ymm1. |
EVEX.128.66.0F38.W0 58 /r VPBROADCASTD xmm1 {k1}{z}, xmm2/m32 | B | V/V | AVX512VL AVX512F | Broadcast a dword integer in the source operand to locations in xmm1 subject to writemask k1. |
EVEX.256.66.0F38.W0 58 /r VPBROADCASTD ymm1 {k1}{z}, xmm2/m32 | B | V/V | AVX512VL AVX512F | Broadcast a dword integer in the source operand to locations in ymm1 subject to writemask k1. |
EVEX.512.66.0F38.W0 58 /r VPBROADCASTD zmm1 {k1}{z}, xmm2/m32 | B | V/V | AVX512F | Broadcast a dword integer in the source operand to locations in zmm1 subject to writemask k1. |
VEX.128.66.0F38.W0 59 /r VPBROADCASTQ xmm1, xmm2/m64 | A | V/V | AVX2 | Broadcast a qword element in source operand to two locations in xmm1. |
VEX.256.66.0F38.W0 59 /r VPBROADCASTQ ymm1, xmm2/m64 | A | V/V | AVX2 | Broadcast a qword element in source operand to four locations in ymm1. |
EVEX.128.66.0F38.W1 59 /r VPBROADCASTQ xmm1 {k1}{z}, xmm2/m64 | B | V/V | AVX512VL AVX512F | Broadcast a qword element in source operand to locations in xmm1 subject to writemask k1. |
EVEX.256.66.0F38.W1 59 /r VPBROADCASTQ ymm1 {k1}{z}, xmm2/m64 | B | V/V | AVX512VL AVX512F | Broadcast a qword element in source operand to locations in ymm1 subject to writemask k1. |
EVEX.512.66.0F38.W1 59 /r VPBROADCASTQ zmm1 {k1}{z}, xmm2/m64 | B | V/V | AVX512F | Broadcast a qword element in source operand to locations in zmm1 subject to writemask k1. |
EVEX.128.66.0F38.W0 59 /r VBROADCASTI32x2 xmm1 {k1}{z}, xmm2/m64 | C | V/V | AVX512VL AVX512DQ | Broadcast two dword elements in source operand to locations in xmm1 subject to writemask k1. |
EVEX.256.66.0F38.W0 59 /r VBROADCASTI32x2 ymm1 {k1}{z}, xmm2/m64 | C | V/V | AVX512VL AVX512DQ | Broadcast two dword elements in source operand to locations in ymm1 subject to writemask k1. |
EVEX.512.66.0F38.W0 59 /r VBROADCASTI32x2 zmm1 {k1}{z}, xmm2/m64 | C | V/V | AVX512DQ | Broadcast two dword elements in source operand to locations in zmm1 subject to writemask k1. |
VEX.256.66.0F38.W0 5A /r VBROADCASTI128 ymm1, m128 | A | V/V | AVX2 | Broadcast 128 bits of integer data in mem to low and high 128-bits in ymm1. |
EVEX.256.66.0F38.W0 5A /r VBROADCASTI32X4 ymm1 {k1}{z}, m128 | D | V/V | AVX512VL AVX512F | Broadcast 128 bits of 4 doubleword integer data in mem to locations in ymm1 using writemask k1. |
EVEX.512.66.0F38.W0 5A /r VBROADCASTI32X4 zmm1 {k1}{z}, m128 | D | V/V | AVX512F | Broadcast 128 bits of 4 doubleword integer data in mem to locations in zmm1 using writemask k1. |
EVEX.256.66.0F38.W1 5A /r VBROADCASTI64X2 ymm1 {k1}{z}, m128 | C | V/V | AVX512VL AVX512DQ | Broadcast 128 bits of 2 quadword integer data in mem to locations in ymm1 using writemask k1. |
EVEX.512.66.0F38.W1 5A /r VBROADCASTI64X2 zmm1 {k1}{z}, m128 | C | V/V | AVX512DQ | Broadcast 128 bits of 2 quadword integer data in mem to locations in zmm1 using writemask k1. |
EVEX.512.66.0F38.W0 5B /r VBROADCASTI32X8 zmm1 {k1}{z}, m256 | E | V/V | AVX512DQ | Broadcast 256 bits of 8 doubleword integer data in mem to locations in zmm1 using writemask k1. |
EVEX.512.66.0F38.W1 5B /r VBROADCASTI64X4 zmm1 {k1}{z}, m256 | D | V/V | AVX512F | Broadcast 256 bits of 4 quadword integer data in mem to locations in zmm1 using writemask k1. |
Instruction Operand Encoding ¶
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | N/A | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
B | Tuple1 Scalar | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
C | Tuple2 | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
D | Tuple4 | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
E | Tuple8 | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
Description ¶
Load integer data from the source operand (the second operand) and broadcast to all elements of the destination operand (the first operand).
VEX256-encoded VPBROADCASTB/W/D/Q: The source operand is 8-bit, 16-bit, 32-bit, 64-bit memory location or the low 8-bit, 16-bit 32-bit, 64-bit data in an XMM register. The destination operand is a YMM register. VPBROAD-CASTI128 support the source operand of 128-bit memory location. Register source encodings for VPBROADCAS-TI128 is reserved and will #UD. Bits (MAXVL-1:256) of the destination register are zeroed.
EVEX-encoded VPBROADCASTD/Q: The source operand is a 32-bit, 64-bit memory location or the low 32-bit, 64-bit data in an XMM register. The destination operand is a ZMM/YMM/XMM register and updated according to the writemask k1.
VPBROADCASTI32X4 and VPBROADCASTI64X4: The destination operand is a ZMM register and updated according to the writemask k1. The source operand is 128-bit or 256-bit memory location. Register source encodings for VBROADCASTI32X4 and VBROADCASTI64X4 are reserved and will #UD.
Note: VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instructions will #UD.
If VPBROADCASTI128 is encoded with VEX.L= 0, an attempt to execute the instruction encoded with VEX.L= 0 will cause an #UD exception.
Operation ¶
VPBROADCASTB (EVEX encoded versions) ¶
(KL, VL) = (16, 128), (32, 256), (64, 512) FOR j := 0 TO KL-1 i := j * 8 IF k1[j] OR *no writemask* THEN DEST[i+7:i] := SRC[7:0] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+7:i] remains unchanged* ELSE ; zeroing-masking DEST[i+7:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
VPBROADCASTW (EVEX encoded versions) ¶
(KL, VL) = (8, 128), (16, 256), (32, 512) FOR j := 0 TO KL-1 i := j * 16 IF k1[j] OR *no writemask* THEN DEST[i+15:i] := SRC[15:0] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+15:i] remains unchanged* ELSE ; zeroing-masking DEST[i+15:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
VPBROADCASTD (128 bit version) ¶
temp := SRC[31:0] DEST[31:0] := temp DEST[63:32] := temp DEST[95:64] := temp DEST[127:96] := temp DEST[MAXVL-1:128] := 0
VPBROADCASTD (VEX.256 encoded version) ¶
temp := SRC[31:0] DEST[31:0] := temp DEST[63:32] := temp DEST[95:64] := temp DEST[127:96] := temp DEST[159:128] := temp DEST[191:160] := temp DEST[223:192] := temp DEST[255:224] := temp DEST[MAXVL-1:256] := 0 VPBROADCASTD (EVEX encoded versions) (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := SRC[31:0] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
VPBROADCASTQ (VEX.256 encoded version) ¶
temp := SRC[63:0] DEST[63:0] := temp DEST[127:64] := temp DEST[191:128] := temp DEST[255:192] := temp DEST[MAXVL-1:256] := 0
VPBROADCASTQ (EVEX encoded versions) ¶
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := SRC[63:0] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0 VBROADCASTI32x2 (EVEX encoded versions) (KL, VL) = (4, 128), (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 32 n := (j mod 2) * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := SRC[n+31:n] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
VBROADCASTI128 (VEX.256 encoded version) ¶
temp := SRC[127:0] DEST[127:0] := temp DEST[255:128] := temp DEST[MAXVL-1:256] := 0
VBROADCASTI32X4 (EVEX encoded versions) ¶
(KL, VL) = (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j* 32 n := (j modulo 4) * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := SRC[n+31:n] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
VBROADCASTI64X2 (EVEX encoded versions) ¶
(KL, VL) = (8, 256), (16, 512) FOR j := 0 TO KL-1 i := j * 64 n := (j modulo 2) * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := SRC[n+63:n] ELSE IF *merging-masking* THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] = 0 FI FI; ENDFOR;
VBROADCASTI32X8 (EVEX.U1.512 encoded version) ¶
FOR j := 0 TO 15 i := j * 32 n := (j modulo 8) * 32 IF k1[j] OR *no writemask* THEN DEST[i+31:i] := SRC[n+31:n] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+31:i] remains unchanged* ELSE ; zeroing-masking DEST[i+31:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
VBROADCASTI64X4 (EVEX.512 encoded version) ¶
FOR j := 0 TO 7 i := j * 64 n := (j modulo 4) * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := SRC[n+63:n] ELSE IF *merging-masking* THEN *DEST[i+63:i] remains unchanged* ELSE ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
Intel C/C++ Compiler Intrinsic Equivalent ¶
VPBROADCASTB __m512i _mm512_broadcastb_epi8( __m128i a);
VPBROADCASTB __m512i _mm512_mask_broadcastb_epi8(__m512i s, __mmask64 k, __m128i a);
VPBROADCASTB __m512i _mm512_maskz_broadcastb_epi8( __mmask64 k, __m128i a);
VPBROADCASTB __m256i _mm256_broadcastb_epi8(__m128i a);
VPBROADCASTB __m256i _mm256_mask_broadcastb_epi8(__m256i s, __mmask32 k, __m128i a);
VPBROADCASTB __m256i _mm256_maskz_broadcastb_epi8( __mmask32 k, __m128i a);
VPBROADCASTB __m128i _mm_mask_broadcastb_epi8(__m128i s, __mmask16 k, __m128i a);
VPBROADCASTB __m128i _mm_maskz_broadcastb_epi8( __mmask16 k, __m128i a);
VPBROADCASTB __m128i _mm_broadcastb_epi8(__m128i a);
VPBROADCASTD __m512i _mm512_broadcastd_epi32( __m128i a);
VPBROADCASTD __m512i _mm512_mask_broadcastd_epi32(__m512i s, __mmask16 k, __m128i a);
VPBROADCASTD __m512i _mm512_maskz_broadcastd_epi32( __mmask16 k, __m128i a);
VPBROADCASTD __m256i _mm256_broadcastd_epi32( __m128i a);
VPBROADCASTD __m256i _mm256_mask_broadcastd_epi32(__m256i s, __mmask8 k, __m128i a);
VPBROADCASTD __m256i _mm256_maskz_broadcastd_epi32( __mmask8 k, __m128i a);
VPBROADCASTD __m128i _mm_broadcastd_epi32(__m128i a);
VPBROADCASTD __m128i _mm_mask_broadcastd_epi32(__m128i s, __mmask8 k, __m128i a);
VPBROADCASTD __m128i _mm_maskz_broadcastd_epi32( __mmask8 k, __m128i a);
VPBROADCASTQ __m512i _mm512_broadcastq_epi64( __m128i a);
VPBROADCASTQ __m512i _mm512_mask_broadcastq_epi64(__m512i s, __mmask8 k, __m128i a);
VPBROADCASTQ __m512i _mm512_maskz_broadcastq_epi64( __mmask8 k, __m128i a);
VPBROADCASTQ __m256i _mm256_broadcastq_epi64(__m128i a);
VPBROADCASTQ __m256i _mm256_mask_broadcastq_epi64(__m256i s, __mmask8 k, __m128i a);
VPBROADCASTQ __m256i _mm256_maskz_broadcastq_epi64( __mmask8 k, __m128i a);
VPBROADCASTQ __m128i _mm_broadcastq_epi64(__m128i a);
VPBROADCASTQ __m128i _mm_mask_broadcastq_epi64(__m128i s, __mmask8 k, __m128i a);
VPBROADCASTQ __m128i _mm_maskz_broadcastq_epi64( __mmask8 k, __m128i a);
VPBROADCASTW __m512i _mm512_broadcastw_epi16(__m128i a);
VPBROADCASTW __m512i _mm512_mask_broadcastw_epi16(__m512i s, __mmask32 k, __m128i a);
VPBROADCASTW __m512i _mm512_maskz_broadcastw_epi16( __mmask32 k, __m128i a);
VPBROADCASTW __m256i _mm256_broadcastw_epi16(__m128i a);
VPBROADCASTW __m256i _mm256_mask_broadcastw_epi16(__m256i s, __mmask16 k, __m128i a);
VPBROADCASTW __m256i _mm256_maskz_broadcastw_epi16( __mmask16 k, __m128i a);
VPBROADCASTW __m128i _mm_broadcastw_epi16(__m128i a);
VPBROADCASTW __m128i _mm_mask_broadcastw_epi16(__m128i s, __mmask8 k, __m128i a);
VPBROADCASTW __m128i _mm_maskz_broadcastw_epi16( __mmask8 k, __m128i a);
VBROADCASTI32x2 __m512i _mm512_broadcast_i32x2( __m128i a);
VBROADCASTI32x2 __m512i _mm512_mask_broadcast_i32x2(__m512i s, __mmask16 k, __m128i a);
VBROADCASTI32x2 __m512i _mm512_maskz_broadcast_i32x2( __mmask16 k, __m128i a);
VBROADCASTI32x2 __m256i _mm256_broadcast_i32x2( __m128i a);
VBROADCASTI32x2 __m256i _mm256_mask_broadcast_i32x2(__m256i s, __mmask8 k, __m128i a);
VBROADCASTI32x2 __m256i _mm256_maskz_broadcast_i32x2( __mmask8 k, __m128i a);
VBROADCASTI32x2 __m128i _mm_broadcast_i32x2(__m128i a);
VBROADCASTI32x2 __m128i _mm_mask_broadcast_i32x2(__m128i s, __mmask8 k, __m128i a);
VBROADCASTI32x2 __m128i _mm_maskz_broadcast_i32x2( __mmask8 k, __m128i a);
VBROADCASTI32x4 __m512i _mm512_broadcast_i32x4( __m128i a);
VBROADCASTI32x4 __m512i _mm512_mask_broadcast_i32x4(__m512i s, __mmask16 k, __m128i a);
VBROADCASTI32x4 __m512i _mm512_maskz_broadcast_i32x4( __mmask16 k, __m128i a);
VBROADCASTI32x4 __m256i _mm256_broadcast_i32x4( __m128i a);
VBROADCASTI32x4 __m256i _mm256_mask_broadcast_i32x4(__m256i s, __mmask8 k, __m128i a);
VBROADCASTI32x4 __m256i _mm256_maskz_broadcast_i32x4( __mmask8 k, __m128i a);
VBROADCASTI32x8 __m512i _mm512_broadcast_i32x8( __m256i a);
VBROADCASTI32x8 __m512i _mm512_mask_broadcast_i32x8(__m512i s, __mmask16 k, __m256i a);
VBROADCASTI32x8 __m512i _mm512_maskz_broadcast_i32x8( __mmask16 k, __m256i a);
VBROADCASTI64x2 __m512i _mm512_broadcast_i64x2( __m128i a);
VBROADCASTI64x2 __m512i _mm512_mask_broadcast_i64x2(__m512i s, __mmask8 k, __m128i a);
VBROADCASTI64x2 __m512i _mm512_maskz_broadcast_i64x2( __mmask8 k, __m128i a);
VBROADCASTI64x2 __m256i _mm256_broadcast_i64x2( __m128i a);
VBROADCASTI64x2 __m256i _mm256_mask_broadcast_i64x2(__m256i s, __mmask8 k, __m128i a);
VBROADCASTI64x2 __m256i _mm256_maskz_broadcast_i64x2( __mmask8 k, __m128i a);
VBROADCASTI64x4 __m512i _mm512_broadcast_i64x4( __m256i a);
VBROADCASTI64x4 __m512i _mm512_mask_broadcast_i64x4(__m512i s, __mmask8 k, __m256i a);
VBROADCASTI64x4 __m512i _mm512_maskz_broadcast_i64x4( __mmask8 k, __m256i a);
SIMD Floating-Point Exceptions ¶
None.
Other Exceptions ¶
EVEX-encoded instructions, see Table 2-23, “Type 6 Class Exception Conditions.”
EVEX-encoded instructions, syntax with reg/mem operand, see Table 2-53, “Type E6 Class Exception Conditions.”
Additionally:
#UD | If VEX.L = 0 for VPBROADCASTQ, VPBROADCASTI128. |
If EVEX.L’L = 0 for VBROADCASTI32X4/VBROADCASTI64X2. | |
If EVEX.L’L < 10b for VBROADCASTI32X8/VBROADCASTI64X4. |